Relevance of neuronal and glial NPC1 for synaptic input to cerebellar Purkinje cells
نویسندگان
چکیده
Niemann-Pick type C disease is a rare and ultimately fatal lysosomal storage disorder with variable neurologic symptoms. The disease-causing mutations concern NPC1 or NPC2, whose dysfunction entails accumulation of cholesterol in the endosomal-lysosomal system and the selective death of specific neurons, namely cerebellar Purkinje cells. Here, we investigated whether neurodegeneration is preceded by an imbalance of synaptic input to Purkinje cells and whether neuronal or glial absence of NPC1 has different impacts on synapses. To this end, we prepared primary cerebellar cultures from wildtype or NPC1-deficient mice that are glia-free and highly enriched with Purkinje cells. We report that lack of NPC1 in either neurons or glial cells did not affect the excitability of Purkinje cells, the formation of dendrites or their excitatory synaptic activity. However, simultaneous absence of NPC1 from neuronal and glial cells impaired the presynaptic input to Purkinje cells suggesting a cooperative effect of neuronal and glial NPC1 on synapses.
منابع مشابه
Conditional Niemann-Pick C mice demonstrate cell autonomous Purkinje cell neurodegeneration.
Pathways regulating neuronal vulnerability are poorly understood, yet are central to identifying therapeutic targets for degenerative neurological diseases. Here, we characterize mechanisms underlying neurodegeneration in Niemann-Pick type C (NPC) disease, a lysosomal storage disorder characterized by impaired cholesterol trafficking. To date, the relative contributions of neuronal and glial de...
متن کاملStereological Estimation of Granule Cell Number and Purkinje Cell Volume in the Cerebellum of Noise-Exposed Young Rat
In spite of the existing reports on behavioural and biochemical changes related to the cerebellum due to noise stress, not much is known about the effect of noise stress on the neuronal changes in the cerebellum. The present study aims at investigating the effects from one week noise exposure on granule cell number and Purkinje cell volume within the neonate rat cerebellum.15-day-old male Wista...
متن کاملLong-Term Potentiation of Glial Synaptic Currents in Cerebellar Culture
Glial cells in the brain express neurotransmitter receptors and can respond appropriately to application of exogenous neurotransmitters such as glutamate. However, activation of receptors by endogenous, synaptically released transmitter has been difficult to demonstrate directly. Using cell-pair recording in cerebellar cultures from embryonic mouse, it is shown that activation of a cerebellar g...
متن کاملSynaptically evoked glutamate transport currents may be used to detect the expression of long-term potentiation in cerebellar culture.
Cerebellar long-term potentiation (LTP) is a use-dependent increase in the strength of the granule cell-Purkinje neuron synapse that occurs after brief stimulation of granule cell axons at 2-8 Hz. Previous work has shown that cerebellar LTP also may be seen when synaptic currents are evoked in granule cell-glial cell pairs in culture. This finding suggests a model in which cerebellar LTP is exp...
متن کاملEffects of Cadmium on Cellular and Subcellular Structures of Cerebellar Purkinje Cells in Four-Day Postnatal Developing Rat
Purpose: This experiment was conducted to evaluate the effects of Cd on cellular and subcellular aspects of cerebellar Purkinje cells in developing rats. Materials and methods: forty adult female Wistar rats served as subjects in this experiment. The animals were assigned randomly to four groups: control I, control II, experiment I and experiment II. The experiment group I and II were injected...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and Cellular Neuroscience
دوره 61 شماره
صفحات -
تاریخ انتشار 2014